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Abstract

Every instance of the Stable Marriage Problem involves two finite sets of equal
size. We can think of one of the sets as containing men and the other as
containing women. Each person must rank the members of the opposite gender
in their order of preference. The goal is then to create a set of man-woman
couples with the following stability property: it is impossible to find a man
and a woman who prefer each other over their respective partners in the set
of couples. A set of couples having this property is called a stable matching.
Such matchings can be found using the Gale-Shapley algorithm. In this thesis,
we discuss the history of the Gale-Shapley algorithm. We also state and prove
some theorems which establish the most important properties of the algorithm.
We provide many examples in order to demonstrate how the algorithm works.
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Chapter 1

Introduction

There is a lot of history that leads up to the Gale-Shapley Algorithm. From
the early 1900’s up until 1945, the labor market for medical interns suffered
a Prisoner’s Dilemma problem in which there was a competition amongst
hospitals for interns. It was a race to hire medical students earlier and earlier
in their medical school career. There were many problems with how hospitals
were looking to get medical students.

For starters, hospitals had more positions open than the number of stu-
dents graduating. This was a big reason for why hospitals would compete for
students. However, allowing students in earlier would be more expensive. The
hospital would not be aware of the student’s final grades in their courses and
thus the students could stop caring about their grades since they already had
a job. To fix this, it was agreed that student information would not be released
until a set date. In this way, all hospitals would be given a fair chance. By
1944, appointments for interviews would take place during a student’s junior
year.

Another issue was the waiting period between the time when offers of
internships were made and the time students were required to accept. If a
student was waitlisted at one’s first hospital choice, but accepted at one’s
second choice, one would wait to hear back from one’s first choice. Students
would be waiting too long to respond to hospitals.

The solution to this was students would have only 10 days to respond to
hospitals after being offered a position. However, while both of the above fixes
seemed like good solutions, it was quickly realized that it was not good enough
to ultimately fix the whole problem.

Thus, the solution was the trial-run algorithm. The students would rank
hospital programs in order of preference, which they applied to and hospitals
would rank their applicants. Both parties would submit these ranking to
a bureau, which would then use this information to arrange a matching of
students to hospitals and inform the parties of the results. Thus a specific
algorithm was proposed to produce a matching from the submitted ranks.
This ultimately became known as the National Intern Matching Program in
1953.
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Many years later it was discovered that this was essentially the Gale-
Shapley algorithm, which was published in 1962 [1]. The only difference is
that the latter finds an optimal matching for the hospital rather than the res-
idents. We know from the Gale-Shapley algorithm, that there will exist at
least one stable matching in an instance of the stable marriage problem. This
algorithm always finds a stable matching.
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Chapter 2

Definitions and Examples

In this chapter a few important key definitions to better understand the Stable
Marriage Problem will be given. I will provide an example for each definition
in order to better comprehend what the definition is stating. I will also include
a few theorems which will be proven in Chapter 4.

Definition 1. An instance of the Stable Marriage Problem of size n involves
two disjoint sets, one containing n men and the other containing n women.
Each man and each woman has a strictly ordered preference list, ranking all
of the people of the opposite sex. We say that person p prefers q to r (q and
r are of the opposite sex from p) if q is ranked higher than r on p’s preference
list.

Example 1. Consider the situation where the set of men is

{Cole, Jack,Ken, Larry} ,

and the set of women is

{Gail,Heather, Jane,Maggie} .

Preference lists for men and women are given in the two tables below.

Cole Jack Ken Larry

Heather Gail Gail Maggie

Jane Jane Maggie Heather

Maggie Heather Jane Gail

Gail Maggie Heather Jane

Table 2.1: Men’s Preferences

Gail Heather Jane Maggie

Cole Jack Ken Ken

Larry Cole Jack Larry

Ken Larry Larry Jack

Jack Ken Cole Cole

Table 2.2: Women’s Preferences

We see that Cole’s first choice is Heather, his second choice is Jane, his
third is Maggie, and his fourth is Gail. The preferences of the others are read
in the same way.

The above is an instance of the Stable Marriage Problem of size 4.
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Definition 2. A matching for an instance of the stable marriage problem of
size n is a set M consisting of exactly n man-woman pairs (m,w), with each
man appearing in exactly one pair, and likewise for each woman. If man m
and woman w are matched in M , then m and w are called partners in M ,
and we write m = PM(w), w = PM(m). Thus, PM(m) is the M -partner of m,
and PM(w) the M -partner of w.

Example 2. Looking back at Example 1, one matching would be

{(Cole,Heather), (Jack,Gail), (Ken,Maggie), (Larry, Jane)}.

Definition 3. Suppose that M is a matching for an instance of the stable
marriage problem. A blocking pair for M consists of a man m and woman w
such that m and w are not partners in M , but m prefers w to PM(m) and w
prefers m to PM(w). We say that M is stable if there is no blocking pair for
M .

The basic problem we address in the thesis is the following:

For each instance of the Stable Marriage Problem, is it possible to
find a stable matching?

In Chapter 3, we answer the above question in the affirmative. A procedure
called the Gale-Shapley Algorithm will be presented and used to find stable
matchings.

Determining whether or not a given matching M is stable turns out to be
easy. We simply check each member of one of the genders to see if that person
can belong to a blocking pair. Suppose that we check the men. Then for each
man m we look to see if any woman w he prefers to PM(m) also prefers him
to PM(w).

Example 3. Referring back to Example 1, the matching

{(Cole,Heather), (Jack,Gail), (Ken,Maggie), (Larry, Jane)}

is not stable because Gail prefers Ken over Jack and Ken’s first choice was
also Gail. Therefore (Ken, Gail) is a blocking pair for the matching.

Definition 4. A man m and woman w are said to form a stable pair if m
and w are partners in some stable matching. If m and w form a stable pair,
we also say that m and w are stable partners of each other.

Example 4. Referring back to Example 1, a stable matching would be

{(Cole,Heather), (Jack, Jane), (Ken,Gail), (Larry,Maggie)}

This is a stable matching, because there are no blocking pairs.
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Definition 5. A stable matching is said to be man-optimal if every man is
paired with his favorite stable partner. Similarly a woman-optimal matching
occurs when every woman is paired with her favorite stable partner. We will
always denote a man-optimal stable matching by M0 and women-optimal by
Mz.

We prove the existence of man-optimal and woman-optimal matchings in
Chapter 4.

Example 5. Refer to the two tables below:

Joe Derek Zack Dave

Karen Judy Penny Beatrice

Judy Karen Beatrice Penny

Penny Penny Karen Judy

Beatrice Beatrice Judy Karen

Table 2.3: Men’s Preferences

Beatrice Judy Karen Penny

Derek Zack Dave Joe

Joe Joe Derek Zack

Dave Dave Joe Derek

Zack Derek Zack Dave

Table 2.4: Women’s Preferences

For the instance of the Stable Marriage Problem described by the above tables,
man-optimal and woman-optimal matchings are given below:

M0 = {(Joe,Karen), (Derek, Judy), (Zack, Penny), (Dave,Beatrice)}

Mz = {(Joe, Penny), (Derek,Beatrice), (Zack, Judy), (Dave,Karen)}
Notice, in M0 every man is paired with his first choice, and likewise every

woman is paired with her first choice in Mz. We cannot expect that this will
always occur, as the example below shows.

Example 6. The two tables below show another instance of the Stable Mar-
riage Problem.

Steve Will Anthony Donald

Emma Ava Ava Harper

Harper Harper Olivia Ava

Ava Emma Emma Olivia

Olivia Olivia Harper Emma

Table 2.5: Men’s Preferences

Olivia Ava Harper Emma

Will Steve Anthony Anthony

Donald Donald Will Steve

Steve Anthony Donald Will

Anthony Will Steve Donald

Table 2.6: Woman’s Preferences

Carrying out the Gale-Shapley algorithm (which we describe in the next chap-
ter), we obtain the following matchings:
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M0 = {(Steve, Emma), (Will,Harper), (Anthony,Olivia), (Donald, Ava)}

Mz = {(Steve, Ava), (Will,Harper), (Anthony,Emma), (Donald,Olivia)}

We see that some individuals end up with their first choice, but not everyone
does.

Example 7. In this example, we discuss the College Admissions Problem. A
college is considering a set of n applicants of which it can admit a quota of
only q. The admissions office evaluates the qualifications of the applicants and
decides which ones to admit. Offering only the q best qualified applicants will
most likely not work, because it cannot be assumed that all who are offered
admission will accept. For a college to receive q acceptances, it will have to
offer admission to more than q applicants. This creates some issues because
there are many factors that are unknown. The colleges are unaware of whether
the applicants have applied elsewhere, how they rank their colleges and which
other colleges are offering them admission. Due to all this uncertainty, colleges
can only expect that the entering class will be close to the desired quota.

The usual admissions procedure not only creates problems for the colleges,
but for the students as well. For example, asking an applicant to put one’s
order of colleges in a preference list could affect what college one gets into. A
college might see that it is the third choice on the preference list and this could
hurt one’s chances of even getting into the college. A solution that was offered
is the “waiting list.” Applicants are informed that they are not admitted into
the college at the time, but may gain admission later. However, this solution
itself still has some problems. Students must decide if they want to wait for
the college to respond to see if they will get admitted later on or if they should
just accept another college that has already offered acceptance.

An alternate approach to the above would be to proceed as follows. Each
applicant would be required to make a preference list in which the colleges
are ranked in order of preference, excluding colleges he or she would never
accept. Similarly, the colleges would rank the applicants in order of preference,
excluding those whom they would never accept. The goal would then be to
find an assignment of applicants to colleges which is stable in the following
sense: it is impossible to find an applicant x and a college y such that x is
unassigned or prefers y to the college he or she is assigned to, and y has an
opening or prefers x to one of the applicants who have been assigned to y. Thus
the problem becomes a generalized version of the Stable Marriage Problem.
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Chapter 3

Gale-Shapley Algorithm

Gale’s and Shapley’s results show that in every instance of the stable
marriage problem there exists at least one stable matching. They did so by
giving an algorithm that is guaranteed to find such a matching. They showed
that their algorithm finds a stable matching that simultaneously gives all men
(or women, if the gender roles are reversed) the best possible partner that they
can have in any stable matching.

The algorithm can be expressed as a sequence of “proposals” from men to
women. Through the execution, each person is either engaged or free; the man
can be free or engaged. However, once a woman is engaged, she can no longer
be free again. That does not mean that her fiancé’s marital status cannot
change. A man who is engaged more than once obtains fiancées who are less
desirable to him, while each engagement brings the woman to a more favorable
partner.

A free woman must accept the first proposal she receives and becomes
engaged to whoever proposes to her. When an engaged woman is proposed to,
she compares the proposer and her current fiancé, then rejects the one she finds
less desirable. If she becomes engaged with the new proposer, her ex partner
will now be free again. Each man proposes to the woman on his preference list
in order of appearance until he becomes engaged and the algorithm terminates
when everyone is engaged.

Each man proposes to the women on his preference list, in the order in
which they appear. He does this until he becomes engaged. However, if a
woman decides to break off the engagement, he becomes free again. When
this happens, he goes back to his sequences of proposals and proposes to the
next woman. The algorithm terminates when everyone is engaged. Upon
termination, the engaged couples form a stable matching. This will be proved
in Chapter 4. We denote the set of all men by M and the set of all women by
W . Below we give the basic Gale-Shapley algorithm, in pseudocode form.
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assign each person to be free.
while some m is free do
begin
w := the first woman on m’s list to whom m has not yet proposed ;
if w is free then

assign m and w to be engaged { to each other }
else

if w prefers m to her fiancé m′ then
assign m and w to be engaged and m′ to be free

else
w rejects m and m remains free

end ; output the stable matching of the n engaged pairs

The above is taken from [2]. Since the order in which the free men propose
is not specified, the algorithm has an element of nondeterminism. Later on, in
Chapter 4, we will see that the nondeterminism is not a problem. The order
in which the free men propose does not affect the outcome. We will prove that
the above algorithm terminates and yields a stable matching in Chapter 4 (see
Theorem 1).

1 2 3 4
3 3 1 2
2 4 4 1
1 1 2 4
4 2 3 3

Table 3.1: Men’s Preferences

1 2 3 4
1 2 1 4
4 3 3 1
3 4 2 2
2 1 4 3

Table 3.2: Women’s Preferences

Example 8. Consider the instance of the Stable Marriage Problem described
by Tables 3.1 and 3.2. A possible execution of the algorithm results in the
following sequence of proposals: man 1 to woman 3 (accepted); man 2 to
woman 3 (not accepted); man 3 to woman 1 (accepted); man 4 to woman 2
(accepted). Based off this, woman 4 does not have a match which means there
is something wrong. As one can see, women 3 was proposed to twice. We
have to view woman 3’s list to see who she prefers out of the two men. Her
first choice is man 1, therefore, she stays with man 1. Then we view man 2’s
second choice which is woman 4. Woman 4 has not yet been proposed to so
her match will be with man 2. Thus, the stable matching generated by the
man-oriented version of the algorithm is {(1, 3), (2, 4), (3, 1), (4, 2)}.

All possible executions of the Gale-Shapley algorithm (men being the pro-
posers) lead to the same stable matching and every man obtains from it the
best partner that he can possibly have in any stable matching. This follows
from Theorem 2 in Chapter 4. Although the men are competing for the women,
they can all agree on a stable matching that is optimal for all of them.
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Notice that, according to Theorem 2, if each man is independently given
his best stable partner, then the result is a stable matching. This is sur-
prising, because there is no prior reason as to why this should even be a
matching. The stable matchings that we attain by the man-oriented version
of the Gale-Shapley algorithm are man-optimal (recall Definition 5). If the
roles are changed and we apply the woman-oriented version of the algorithm,
then we obtain the woman-optimal stable matching. In some cases, the man
and woman-optimal stable matchings will be identical, but in general, they
will not be. As before, we will denote the man-optimal stable matching by M0

and the woman-optimal by Mz.
When each man ends up with his best stable partner, it is no surprise that

this comes with some sort of consequence. However, it is the opposite gender
that faces the problem. In the man-optimal stable matching, each woman
has the worst possible partner that she can have in any stable matching (see
Theorem 3 in Chapter 4). Therefore, a man-optimal matching is also woman-
“pessimal” (the term for each woman ending up with worst possible stable
partner); likewise the woman-optimal stable matching is man-pessimal.

Example 9. Consider the situation described by Tables 3.3 and 3.4

1 2 3 4
1 3 2 4
2 4 4 1
3 1 1 2
4 2 3 3

Table 3.3: Men’s Preferences

1 2 3 4
2 1 4 3
4 3 2 1
3 4 1 2
1 2 3 4

Table 3.4: Women’s Preferences

If we apply the Gale-Shapley algorithm with men and then women as pro-
posers, we obtain the man-optimal and woman-optimal stable matchings be-
low:

M0 = {(1, 1), (2, 3), (3, 2), (4, 4)}

and

Mz = {(1, 3), (2, 1), (3, 4), (4, 2)}.

Definition 6. If the Gale-Shapley algorithm is being carried out with the
men doing the proposing, then we call this the man-oriented version of the
algorithm. Likewise, when women are doing the proposing, we call this the
woman-oriented version.
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We will see in Chapter 4 that the man-oriented version of the algorithm leads
to a man-optimal stable matching, and the woman-oriented version leads to a
woman-optimal stable matching.
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Chapter 4

Theorems and Proofs

In this chapter, I will provide proofs of the theorems that were discussed in
earlier chapters. When the man-oriented version of the Gale-Shapley algorithm
is executed, each man proposes to the women on his preference list, starting
with his first choice. He does this until he is engaged. If a woman breaks
the engagement, then he is free again. He begins the sequence of proposals
again starting with the next woman on his preference list. The algorithm will
terminate when everyone is engaged. It turns out that the order in which the
free men propose does not determine the outcome. We will now show that
upon termination, the engaged couples form a stable matching.

Theorem 1. In any given instance of the stable marriage problem, the Gale-
Shapley Algorithm terminates and once it terminates, the engaged pairs form
a stable matching.

Proof. We use contradiction to prove that no man can be rejected by all
women. Assume that a man can in fact be rejected by all women. Once
a woman is engaged, she can no longer be free again (although she can be-
come engaged to a different man). Therefore the only way a woman can reject
a proposal is if she’s already engaged. It follows that if a man is rejected by
the last woman on his list, then all of the women have already been engaged.
However, there are an equal number of men and women, and no man can have
two partners. Thus, all of the men would have also been engaged, a contradic-
tion. No man can propose to the same woman twice. Hence, the total number
of proposals cannot exceed n2 (in a case involving n men and n women). We
conclude that the algorithm does terminate.

After termination, the engaged pairs form a matching, which we denote by
M . If man m prefers woman w to PM(m), then w must have rejected m at
some point. This means that w was, either at the time of m’s proposal or at
some later time, engaged to a man she prefers to m. Any further changes in
w’s engagement status will result in an even better partner. Thus, w cannot
prefer m to PM(w) and (m,w) cannot block M . This means that the matching
M is stable.

Recall, the concept of stable partner was introduced in Definition 4.

13



As we have mentioned before, all executions of the Gale-Shapley algorithm
lead to the same stable matching. This stable matching has the property that
every man ends up with his best possible stable partner, as we prove below.

Theorem 2. After any execution of the man-oriented version of the Gale-
Shapley algorithm, every man is paired with his favorite stable partner.

Proof. Suppose towards a contradiction that some execution E of the Gale-
Shapley algorithm results in a matching M with some man m not paired with
his favorite stable partner. Then, in some other stable matching M ′, man m
is paired with a woman he likes more than his partner in M . Let’s denote m’s
partners in M and M ′ by w and w′, respectively. Recall, in any execution of
the Gale Shapley algorithm, each man proposes first to the woman he likes
best. If he is rejected, then he just proposes to the women he likes second best,
and so on. Since m winds up with w in M , and not with w′, it follows that
w′ rejected m at some point during E. We may assume that this was the first
time during E that a man was rejected by a stable partner. Now, w′ rejected
m for someone else; let’s call him m′. Since w′ rejected m for m′, it must be
the case that w′ prefers m′ over m.

We claim that w′ is the favorite stable partner of m′. To see this, we assume
for a contradiction that the favorite stable partner of m′ is a different woman,
let’s call her w′′. Observe that m′ must have proposed to w′′ during E before
he proposed to w′ (since he prefers w′′ to w). Furthermore, he must have
been rejected by w′′ at some point (if not, he would have never proposed to
w′). Thus during E, m′ is rejected by w′′ before he proposes to w′. However,
recall that m is rejected by w′ because of the engagement of w′ with m′. This
means that m is rejected by w′ after m′ is rejected by w′′. This contradicts
our assumption that the rejection of m by w′ is the first time during E that a
man is rejected by a stable partner. The claim is established.

So now we have that w′ prefers m′ over m and m′ prefers w′ over all of
his other stable partners. This means that the pair (m′, w′) blocks M ′. But
M ′ was suppose to be stable. This contradiction completes the proof of the
theorem.

The above theorem implies that if each man is independently given his best
stable partner, then the result is a stable matching.

Having examined the output of the man-oriented version of the Gale-
Shapley algorithm from the perspective of the men, we now consider just
how good the output is for the women. Before reading the theorem and proof
below, the reader may wish to review Definition 5 in Chapter 2.

Theorem 3. In the man-optimal stable matching, each woman has the worst
possible partner that she can have in any stable matching.

Proof. As always, we denote the man-optimal stable matching by M0. We are
going to prove this theorem by contradiction. Assume that there is a woman
w whose partner in M0 is not her least favorite stable partner. This means
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that there exists a stable matching M ′ such that w prefers her partner in M0

over her partner in M ′. We represent w’s partner in M0 and M ′ as m and m′,
respectively. Based off of this, we have that m can’t have the same partner
in M ′ that he has in M0; let’s denote his partner in M ′ by w′. Since m is
paired with w in the man-optimal matching, then m must prefer w to w′. It
now follows that M ′ is blocked by (m,w). This contradicts the fact that M ′

is stable.

The man-optimal (and woman-optimal) stable matchings turn out to ex-
hibit another interesting kind of optimality, which we describe in the theorem
below.

Theorem 4. For any instance of the stable marriage problem, there is no
matching, stable or otherwise, in which every man has a partner whom he
strictly prefers to his partner in the man-optimal stable matching M0.

Proof. Clearly, there cannot be any stable matching with the property that
was just stated. We will prove this by using contradiction. Therefore, we
assume that there exists an unstable matching M ′ with this property. During
an execution of the man-oriented Gale-Shapley algorithm, if w is the last
woman to become engaged then no man was rejected by w, since the algorithm
terminates when the last woman receives her first proposal. But if w’s partners
in M0 and M ′ are m and m′ respectively, then m′ prefers w to his partner in
M0, so w must have rejected m′. Thus, a contraction.
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Chapter 5

Examples

In this chapter, we will carry out the Gale-Shapley algorithm using different
versions of the algorithm (man-oriented vs woman-oriented). In some of the
examples, we give a detailed description of how the algorithm proceeds when
there are rejections.

Carl Ethan Jon Ryan

Grace Madison Addison Riley

Madison Addison Riley Grace

Riley Grace Madison Addison

Addison Riley Grace Madison

Table 5.1: Men’s Preferences

Addison Grace Madison Riley

Ethan Ethan Jon Ryan

Carl Jon Carl Ethan

Ryan Carl Ethan Jon

Jon Ryan Ryan Carl

Table 5.2: Women’s Preferences

We read the table as follows: Carl’s first choice is Grace, his second choice is
Madison, his third is Riley and his fourth is Addison. The preferences of the
others are read in the same way.

A possible execution of the Gale-Shapley algorithm results in the following
sequences of proposals: Carl to Grace (accepted); Ethan to Madison (ac-
cepted); Jon to Addison (accepted); Ryan to Riley (accepted). Thus, the
stable matching generated by the man-oriented version of the algorithm is

{(Carl, Grace), (Ethan,Madison), (Jon,Addison), (Ryan,Riley}.

Note that in this example, every man ends up with his first choice. This of
course cannot happen in situations where the same woman is listed first by
two or more men.
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Bill Clint Kevin Ron

Sally Tammy Sally Anna

Anna Anna Jane Sally

Jane Sally Tammy Tammy

Tammy Jane Anna Jane

Table 5.3: Men’s Preferences

Anna Jane Sally Tammy

Clint Kevin Bill Ron

Bill Ron Ron Bill

Ron Bill Kevin Clint

Kevin Clint Clint Kevin

Table 5.4: Women’s Preferences

For the situation described by Tables 5.3 and 5.4, a possible execution of the
Gale-Shapley algorithm results in the following sequences of proposals: Bill to
Sally (accepted); Clint to Tammy (accepted); Kevin to Sally (not accepted);
Kevin to Jane (accepted); Ron to Anna (accepted). Kevin and Sally were not
paired together because Sally’s first choice was Bill. Thus, the stable matching
generated by the man-oriented version of the algorithm is

{(Bill, Sally), (Clint, Tammy), (Kevin, Jane), (Ron,Anna)}.

Note that this matching is man-optimal, by Theorem 2.

Dave Frank Greg Hank Luke

Maria Erica Kasey Nancy Nancy

Erica Irene Erica Maria Irene

Kasey Kasey Nancy Irene Maria

Irene Maria Maria Erica Kasey

Nancy Nancy Irene Kasey Erica

Table 5.5: Men’s Preferences

Erica Irene Kasey Maria Nancy

Hank Dave Frank Hank Frank

Frank Luke Dave Dave Greg

Luke Greg Greg Luke Dave

Dave Frank Luke Greg Luke

Greg Hank Hank Frank Hank

Table 5.6: Women’s Preferences
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For the situation described by Tables 5.5 and 5.6, a possible execution of the
woman-oriented version of the Gale-Shapley algorithm results in the following
sequence: Erica to Hank (accepted); Irene to Dave (accepted); Kasey to Frank
(accepted); Maria to Hank (accepted); Erica to Frank(accepted); Kasey to
Dave(accepted); Irene to Luke (accepted); Nancy to Frank (not accepted);
Nancy to Greg (accepted).When Maria proposes to Hank, we take a look at
Hank’s preference list and see that he prefers Maria over Erica so he breaks
off his engagement with Erica and goes with Maria. Now we go back to Erica
who must propose to her second choice. She proposes to Frank who is already
engaged to Kasey. However, Frank prefers Erica to Kasey so he leaves Kasey to
be with Erica. Then Kasey is single again and proposes to her second choice,
Dave. Dave must accept her proposal, because he has not yet been proposed
to. Next, Nancy proposes to Frank, but Frank prefers Erica over Nancy so he
stays with Erica. Then Nancy proposes to her second choice Greg, who must
accept because he is unengaged. Thus, the stable matching generated by the
woman-oriented version of the algorithm is

{(Dave,Kasey), (Frank,Erica), (Greg,Nancy), (Hank,Maria), (Luke, Irene)}.

This matching is woman-optimal.

Brian Dan Larry Rob

Fran Fran Taylor Leslie

Leslie Taylor June June

June June Fran Fran

Taylor Leslie Leslie Taylor

Table 5.7: Men’s Preferences

Fran June Leslie Taylor

Brian Brian Dan Rob

Rob Larry Brian Larry

Larry Rob Larry Dan

Dan Dan Rob Brian

Table 5.8: Women’s Preferences

Consider now the situation described by Tables 5.7 and 5.8. A possible ex-
ecution of the man-oriented version of the Gale-Shapley algorithm results in
the following sequence of proposals: Brian to Fran (accepted); Dan to Fran
(not accepted); Dan to Taylor (accepted); Larry to Taylor (accepted); Dan
to June (accepted); Rob to Leslie (accepted). Dan proposes to Fran, but she
rejects her proposal, because her first choice is Brian. Then Dan proposes to
Taylor who has not been proposed to yet so she accepts his proposal. However,
right after that, Larry proposes to Taylor and Taylor prefers Larry over Dan.
Therefore she leaves her engagement with Dan to be engaged to Larry. Dan
is once again single and must propose to his next choice. His third choice is
June. June is single so she accepts Dan’s proposal. No other rejections occur
throughout the rest of the algorithm. Thus, the stable matching generated by
the man-oriented version of the algorithm is
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{(Brian, Fran), (Dan, June), (Larry, Taylor), (Rob, Leslie)}.

A possible execution of the Gale-Shapley algorithm using the woman-oriented
version results in the following sequence of proposals: Fran to Brian (accepted);
June to Brian (not accepted); June to Larry (accepted); Leslie to Dan (ac-
cepted); Taylor to Rob (accepted). When June proposes to Brian, he turns
down her proposal, because he prefers Fran to June. Therefore, June must
ask her second choice, which is Larry. Larry has not been proposed to yet so
he must accept her proposal. No other rejections occur throughout the rest of
the algorithm. Thus, the stable matching generated by the woman-oriented
version of the algorithm is

{(Brian, Fran), (Dan,Leslie), (Larry, June), (Rob, Taylor)}.

After carrying out the two different versions of the algorithm, we see that the
results vary. The only couple that remains together is Brian and Fran. This
occurs because they are both each other’s first choice.

Doug James Liam Noah

Mia Sophia Zoe Zoe

Sophia Zoe Lily Lily

Lily Lily Sophia Sophia

Zoe Mia Mia Mia

Table 5.9: Men’s Preferences

Lily Mia Sophia Zoe

Noah Doug Liam Doug

Liam James James James

James Liam Doug Liam

Doug Noah Noah Noah

Table 5.10: Women’s Preferences

For the situation described by the above two tables, we will show two possible
executions of the Gale-Shapley algorithm. One will be a man-oriented version
and the other will be a woman-oriented version. Then we will compare the
outcomes.

A possible execution of the algorithm using the man-oriented version results
in the following sequence of proposals: Doug to Mia (accept); James to Sophia
(accept); Liam to Zoe (accept); Noah to Zoe (not accept); Noah to Lily (ac-
cept). Zoe prefers Liam to Noah therefore she will stay with Liam. Thus, the
stable matching generated by the man-oriented version of the algorithm is

{(Doug,Mia), (James, Sophia), (Liam,Zoe), (Noah, Lily)}.
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A possible execution of the Gale-Shapley algorithm using the woman-oriented
version results in the following sequence of proposals: Lily to Noah (accept);
Mia to Doug (accept); Sophia to Liam (accept); Zoe to Doug (not accept),
Zoe to James (accept). Doug prefers Mia over Zoe so Zoe must ask her second
choice. She proposes to James, who is single, and is now engaged to James.
Thus, the stable matching generated by the woman-oriented version of the
algorithm is

{(Doug,Mia), (James, Zoe), (Liam, Sophia), (Noah, Lily)}.

While two couples did not change from the previous matching, James and
Liam switched partners with Zoe and Sophia.
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