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Abstract 

 Drosophila have been vectors for scientific research since the beginning of the 20th 

century. Their successful use within experiments that investigated mendelian genetics inspired 

their continuous application to biological research. This includes topics that detailed what is now 

known as innate immunity. The innate immune system of Drosophila is a first line of defense 

against pathogens. Innate immunity has been extensively researched and has reserved responses 

between Drosophila and mammals. Specifically, Drosophila have been experimentally targeted 

to draw conclusions on human infecting viruses such as Human Immunodeficiency Virus (HIV) 

and Severe Acute Respiratory Syndrome Coronavirus (SARS-Cov-1). Such experiments 

modeled viral protein function resulting from viral gene expression. Drosophila can additionally 

be applied to research pertaining to the novel Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-Cov-2). Using transgenic Drosophila that contain a modified SARS-CoV-2 gene would 

ultimately force expression of the chosen gene within ocular tissue. This ocular tissue can be 

isolated and properly stained to observe cell proliferation. Evaluating proliferation can help 

develop standard knowledge of  

SARS-CoV-2 infected cells.  

1. Introduction 

The use of model organisms within scientific research has been essential to understanding 

a wide array of biological phenomena. Their use is continuously relevant and can be applied to 

new uprising questions and concerns. The novel Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2) can potentially be investigated through the application of a model 

organism. When considering the historical use of Drosophila to evaluate topics such as modern 
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genetics, bacterial susceptibly, and viral infection, a successful application to Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be assumed. This concept is 

strengthened due to the homologies between Drosophila and mammalian innate immunity. 

Tailoring transgenic Drosophila to express a portion of the SARS-CoV-2 genome can provide 

answers to questions on proliferation of contaminated cells.           

2. Drosophila as a Model Organism 

A model organism refers an organism that is extensively used within research as a 

replacement for human beings, allowing scientists to develop a template for biological 

phenomena without inflicting harm to human subjects. (Urry, et al., 2017) Favored qualities for a 

model organism include quick generation, high progeny production, and easy maintenance. 

Drosophila melanogaster, a specific species of fruit flies, is one of the earliest developed model 

organisms and has been used to evaluate an array of phenomena including the behavior of 

genetics, inheritance factors and modeling a wide range of human diseases. Drosophila have a 

rapid generation time of approximately two weeks with the potential of producing hundreds of 

progenies. They are also fairly simple genetically with a genome composed of only four 

chromosomes. Three being autosomes while the remaining one is a sex chromosome. Their 

abilities and characteristics were deemed ideal and suitable by the famous embryologist, Thomas 

Hunt Morgan for investigating mendelian genetics. Morgan’s experimental use of Drosophila 

melanogaster remains one of, if not the, textbook example of the use of model organisms in 

biological research. This experiment was deemed scientifically successful due to its observation 

of red-eyed wildtype and mutant, white-eyed male Drosophila. This proved that inherited 

factors, specifically eye color and sex are somehow linked to chromosomes. An exact link was 

not clear however, Morgan suspected that the factors were located on the same chromosome. 
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(Gleason, 2017) Morgan outlined these observations in immense detail in his publication, “Sex 

limited inheritance in Drosophila.” These observations were the stimulus for “Modern Genetics” 

and for the understanding that inherited factors known as genes (that can have variants known as 

alleles) are located on chromosomes. (Urry, et al., 2017) (Vilmos and Kurucz, 1998) Overall, this 

experiment solidified the chromosome theory of inheritance and allowed it to become a 

steppingstone for future knowledge. Examples of future knowledge include the examination of 

linked genes (genes located closely to each other on the same chromosome) and crossing over 

(genetic material exchange) during meiosis. (Vilmos and Kurucz, 1998) It also proved that 

Drosophila melanogaster can successful be used as a simplified model of genetics and can be 

applied to a more in depth and complex discussion of genetics. Overall this solidified 

Drosophila’s status as a model organism. Since this experiment, which was performed in 1910, 

research using and manipulating Drosophila has become overwhelmingly popular. Fortunately, 

Drosophila melanogaster-based research has proved to extremely applicable to human biology. 

This category of research covers a diverse and expansive list of topics and processes. Examples 

include extensions of genetics, metabolic procedures, implementations of medications and 

questions on pathogen susceptibility.  

3. Inspiration for Drosophila use in Immunity Research 

A majority of research using Drosophila melanogaster is aimed at understanding their 

methods of survival. This includes proper environment, successful mating, and first-line immune 

defenses. An original experimental question was “Can Drosophila become ill?” This question 

was originally investigated by Hans G. Boman along with contribution from his colleagues in 

1970. His inspiration being the major health concerns of that time. One example was Malaria, a 

disease caused by parasitic Plasmodium spp which is commonly spread by female Anopheles 
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mosquitos. (Faye and Lindberg, 2016) To properly understand questions like these, which relate 

to human survival, we must start on a smaller and broader scale. Discussion and observations on 

how Drosophila conduct first-line immune defenses offered a beginning to this understanding. 

Boman was able to experimentally determine that fruit flies certainly possess a mechanism for 

recognizing and defending themselves against pathogenic material through a humoral immune 

response. This was seen through trials of inoculation of test flies with pathogenic gram-negative 

bacteria and observing the host for survival. Three specific bacteria, Pseudomonas aeruginosa, 

Aerobacter cloacae, and Escherichia coli were isolated in the log phase of replication and tested 

at varied quantities. Although, all three bacteria exhibited colonies, only Pseudomonas 

aeruginosa caused host fatality. (Faye and Lindberg, 2016) This inspired Boman to experiment 

with non-pathogenic bacteria. Aerobacter cloacae was modified with an additional antibiotic 

marker to avoid similar responses to primary infection. The modified sample was then used to 

cause secondary infection within the same test flies. No growth was observed. Additionally, 

secondary Pseudomonas aeruginosa and Escherichia coli infections were alleviated as a result, 

which is said to model immunization by vaccination. Boman’s findings conclude that upon 

primary infection, Drosophila initiate a robust immune response that can differentiate self and 

non-self-material which was independent of cellular activity. (Faye and Lindberg, 2016) The 

mechanism observed can be put under the blanket term of innate immunity which has since been 

extensively investigated for more detail.  

4. Immunity 

Immunity is a collection of responses within an organism that resist infection by a 

pathogen. This includes identification of pathogenic and unviable material while attempting to 

combat damage done by it. There are several ways that responses can prevent damage including 
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physically blocking and destroying pathogens as well as interfering with their replication and 

growth. Responses are carried out through many circulating cell types and can be categorized 

into two subsets, Innate and Adaptive. Innate immunity is an immediate and non-memory-based 

defense against infection that is present in all organisms. It is carried out by innate cells that can 

broadly identify foreign material and pathogen-associated molecular patterns (PAMPs). This is 

done through use of Toll-like receptors (TLRs.) These cells, however, cannot identify specific 

strains of pathogens. For example, bacterial infection will be recognized but innate cells cannot 

differentiate E. coli from S. aureus infections. Within humans there are many types of innate 

cells. Examples include some white blood cells (eosinophils, monocytes, neutrophils, basophils), 

mast cells, and dendritic cells. (Features of an immune response) A substantial process executed 

by these cells is phagocytosis. Phagocytosis is the physical engulfing of pathogenic or apoptotic 

material. (Govind, 2008) Innate immunity is essential to stimulate the adaptive immune system. 

Adaptive immunity exhibits more specificity and is composed of three cell types, B 

lymphocytes, T lymphocytes and Helper T cells. These cells will be rapidly produced if the 

innate immune system senses danger. B lymphocytes and T lymphocytes have specialized 

receptors, B-cells receptors (BCRs) and T-cell receptors (TCRs) that can identify foreign 

material when bound to their corresponding antigens. (Features of an immune response) Antigen 

presentation results from innate responses. For example, dendritic cells are antigen-presenting 

cells. (Théry and Amigorena, 2001) Upon antigen detection, B-cell receptors synthesize 

antibodies, proteins that bind to pathogens and destroy them and T-cell receptors focus on 

recruiting other immunity cells and destroying already infected cells. Additionally, Helper T 

cells will encourage the production of B lymphocytes and T lymphocytes through the release of 

cytokines. As pathogenic threat lessens, B lymphocytes and T lymphocytes will stop replicating 
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and be maintained within the host as memory cells. If the host were to be presented with the 

same pathogen again, memory cells will carry out processes to eliminate the pathogen before 

infection. (Features of an immune response)   

5. The Innate Immunity of Drosophila  

Drosophila are an excellent model for studies of innate immunity due to their lack of 

adaptive immune responses. The species allows for conclusions based purely on innate 

interaction without contamination of adaptive processes. A variety of pathogen types such as 

bacteria, fungus, viruses, and parasites can pose a threat to Drosophila. (Govind, 2008) There are 

three main anatomical components that contribute to innate immunity within Drosophila. The fat 

body, which produces antimicrobial peptides, the lymph gland that produces hemocytes and 

hemocytes themselves. Hemocytes circulate within hemolymph, fluid within Drosophila that is 

equivalent to vertebrate blood and develop through a process called hematopoiesis. (Vilmos and 

Kurucz, 1998) They are diverse in morphology and can be classified into three subsets, crystal 

cells, lamellocytes and plasmatocytes. Plasmatocytes utilize the process of phagocytosis, where 

foreign pathogens and debris are engulfed and discarded. Crystal cells are responsible for 

secreting the necessary factors for melanisation, a process that encourages encapsulation of 

pathogens. Lamellocytes are also involved in encapsulation, however, are less likely to circulate 

within a healthy host. (Williams, 2007) In general, hemocytes are multi-functional and provide 

both chemical and mechanical barriers to pathogens. There are three categories of innate 

responses that Drosophila initiate including physical barriers, humoral responses, and cellular 

responses. Physical barriers include epithelial cells of the respiratory, intestinal and reproductive 

tract. If pierced by a pathogen a clotting cascade is initated to enclose it. (Govind, 2008) 

Humoral responses are generally carried out by the antimicrobial agents with cellular response 
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interjections. Upon foreign material recognition, rapid antimicrobial peptide (AMPs) production 

is initiated. Antimicrobial peptides are a diverse group of factors which can be distinguished 

specifically by morphology. Every peptide contains 60 amino acids and has a positive charge. 

However, the specific amino acid sequences and types of bonds between them can vary between 

peptides. These are the factors that determine the class of AMPs a given peptide falls into. AMPs 

are expressed in many immune cell types such as phagocytotic cells and physical barriers cells of 

the digestive tract. (Diamond et al., 2009) One humoral response includes melanisation, a 

process where hemocytes in the presence of a pathogenic microbe synthesize the proenzyme, 

prophenoloxidease, which initiates encapsulation, a cellular process. The synthesized enzyme, 

prophenoloxidease is transported to sites of infection such as wounds where hemocytes will then 

employ encapsulation. Through the catalyzation of melanin, the invading pathogen can be 

encapsulated and enclosed on. (Faye and Lindberg, 2016) An additional example of a humoral 

response is the coagulation of hemolymph. This process includes a serine protease reaction that 

striggered by lipopolysaccharide detection. Lipopolysaccharide can be found in the exotoxins of 

some pathogens such as bacteria. This mediates a clotting cascade that encloses on an invading 

microbe. In addition, intermediates of this process are secreted that produce toxins inferring that 

hemolymph clotting also has a role in denaturing pathogens. (Muta, and Iwanaga, 1996) During 

these procedures other cellular responses have freedom to interject however, they are not well 

modeled through research. (Parsons and Foley, 2016)  

Each humoral or cellular response requires stimulation by the recognition of foreign 

material. Stimulation is regulated and carried out mainly through two signaling pathways within 

Drosophila, the Toll pathway and the Immune deficiency (Imd) pathway. The Toll pathway is 

initiated by fungal and gram-positive microbe recognition and signals AMP production in 
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response. This pathway has also shown to interact with phagocytosis, encapsulation, 

melanisation and hemocyte production. The Toll pathway employs circulating pattern 

recognition proteins that contain a Toll receptor. Example proteins would include peptidoglycan 

recognition proteins (PGRPs) and Gram-negative binding protein (GNBP1) which are both 

encoded for by different genes. (DeVeale and Brummel and Seroude, 2004) There are currently 

nine known genes that encode for Toll receptors. Spatzle, a ligand necessary for Toll efficiency, 

is activated and then binds to the Toll receptor. Additional proteins are then recruited to create a 

MyD88-Tube-Pelle complex which marks activation of the Toll pathway. Once activated, cactus, 

another protein that is bound to NF-κB transcription factor Dif is phosphorylated and then 

degraded. Dif will then isolate and move to the cytoplasm where it will initiate gene activation. 

Mutations that hinder any of these steps, the toll receptor, Spatzle or recognition proteins 

encourage host fatality upon infection of gram-negative or fungal microbes. (Valanne, Wang, 

and Rämet, 2011) 

Figure 1: Toll and Imd Signaling Pathways of Drosophila   
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https://onlinelibrary.wiley.com/doi/full/10.1111/j.1474-9728.2004.00106.x  

In contrast, the Imd pathway detects gram-negative bacteria using peptidoglycan‐

recognition protein (PGRP‐LC). PGRP-LC binds to PGN, a component of the cell wall of gram-

negative bacteria. Upon activation, an IKK‐β/IKK‐γ kinase complex initiates the phosphorylation 

of the NF-κB transcription factor Relish. Relish then cleaves and migrates to the nucleus where it 

activates several genes. (DeVeale and Brummel and Seroude, 2004) The Imd pathway is 

responsible for most of the AMP production in Drosophila. Drosophila that are mutant for Imd 

necessary factors are more susceptible to gram-negative microbes. (Myllymäki and Valanne and 

Rämet, 2014)  

6. Parallels between Drosophila and Vertebrate Innate Immunity 

When reviewing Drosophila innate immunity, there are several parallels that can be seen 

with vertebrate innate immunity. These connections can be seen in multiple instances. For 

example, in anatomic structures. The fat body within fruit flies, is comparable to the liver within 

a mammal. The mammalian liver is a detoxifying organ that is responsible for the production of 

clotting factors. The procedure of clotting is also a homologous factor between the two. 

Hemolymph clotting initiated within fruit flies is comparable to the blood clotting mechanism of 

a vertebrate and contains regions comparable to the von Willebrand factor. The von Willebrand 

factor is a protein that’s essential to mammalian coagulation. (Vilmos and Kurucz, 1998) In 

tandem with this conclusion, hemocytes, the foundation for insect innate immunity, can be 

successfully compared to the blood cells of vertebrates. More specifically, macrophages, 

phagocytic blood cells of vertebrates share a common function with plasmatocytes. Both engulf 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1474-9728.2004.00106.x
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smaller pathogenic or apoptotic cells and dispose of them. (Parsons and Foley, 2016) In addition, 

another humoral response can also draw parallels. During the process of melanisation, the 

resulting enzyme, prophenoloxidease, is comparable to proteins C3 and C4 within vertebrates 

since they contain a like sequence. Specifically, the thiol-ester section of C3 and C4 is almost 

identical to the prophenoloxidease sequence. Additionally, the Toll and Imd signaling pathways 

show similarities as well. (Imler, 2014) The employment of NF-κB transcription factors that 

result in gene expression remains a reserved process. Within vertebrates that have an adaptive 

immune system, using NF-κB transcription factors allows stimulation of adaptive immunity. 

This is seen in the expression of cytokines that cause inflammation. (DeVeale and Brummel and 

Seroude, 2004) Based on these examples, it can be concluded that there is a definite link between 

vertebrate and Drosophila innate immunity. The most viable suggestion implies that there is an 

evolutionary link (either a common ancestor or survival of favorable traits) between the two. 

(Vilmos and Kurucz, 1998) This link allows for Drosophila melanogaster to be an appropriate 

vessel within research where conclusions on vertebrate immune responses are sought.  

7. The Innate Viral Response of Drosophila  

Within research, Drosophila are commonly chosen to model infection by a variety of 

pathogens. Bacterial and fungal infection are well studied and understood. Knowledge of viral 

pathogen infection would benefit from additional research. Viruses are infectious genetic 

material that are encased in a protein enclosure. They can be separately identified by protein 

capsid shape and infectious nucleic acid type. Viruses are completely dependent on a host and 

take advantage of natural cellular processes for survival. Viral infection occurs when a virus 

introduces their genome into a host cell which will consequently replicate the viral genome. The 

replicated genome is then encapsuled into new viral microbes which can travel across the tissue 
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of a host. (Urry, et al., 2017) Injected genetic material can be in the form of RNA or DNA. RNA 

viruses contain either single stranded RNA (ssRNA) or double stranded RNA (dsRNA). ssRNA 

can be further categorized into either positive ssRNA (ssRNA(+)) or negative ssRNA (ssRNA(-

)). ssRNA(+) can be quickly transcribed by a host cell due to its similarity to mRNA. ssRNA(-) 

must be converted into ssRNA(+) to be translated. RNA viruses tend to have small genomes 

therefore encode for few proteins. In contrast, the genome of a DNA virus is large and complex. 

DNA viruses can contain double stranded DNA (dsDNA) and sometimes single stranded DNA 

(ssDNA). Both require DNA polymerase to efficiently replicate. (Durmuş, and Ülgen, 2017) 

Drosophila recognize invaders broadly using pattern recognition receptors (PRRs) that interact 

with pathogen-associated molecular patterns (PAMP.) PAMP interaction stimulates effector cells 

and gene activation of anti-microbial peptides which is done through several pathways. This was 

seen previously within humoral innate responses that were initiated by the Toll and Imd 

pathways.  Drosophila express specific processes such as transcriptional pausing, autophagy, and 

RNA interference/silencing in effort to combat viral pathogens. Transcriptional pausing takes 

place early in the innate response and primes genes with a pause sequence. This will 

consequently interfere with RNA biogenesis. (Xu and Cherry, 2014) A pausing sequence 

prevents the process of transcribing DNA sequences into RNA sequences which is done by RNA 

polymerase. (Saba, et al., 2019) Autophagy is a natural cellular regulatory process where 

components of cytoplasm, specially lysosomes of targeted cells are broken down. Although there 

are three types of autophagy, macroautophagy, microautophagy and chaperone-mediated 

autophagy, the term “autophagy” commonly refers to solely macroautophagy. Macroautophagy 

includes the formation of an autophagosome which will attach to and deliver degradation agents 

to lysosomes. (Mizushima, 2007) RNA silencing is a step of RNA interference. RNA 
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interference negatively impacts gene expression of foreign genetic material. Upon recognition of 

a viral pathogen, small interfering/silencing RNA (siRNAs) are produced in effort to degrade 

corresponding mRNA. (Xu and Cherry, 2014) Nonviable mRNA will interfere with efficient 

gene expression. (Meng and Lu 2017) Experimentally, mutant Drosophila for RNA silencing are 

seen to be highly susceptible to RNA type viruses. (Bronkhorst, and P van Rij, 2014) In addition 

to these responses, there is evidence that the Toll, Imd, and JAK/STAT pathways are involved in 

viral defense. The Toll pathway is commonly observed in antibacterial and fungal mechanisms 

however, in terms of antiviral defense, it is said to be carried out untraditionally. In fact, 

understanding the exact mechanism in which the Toll pathway stimulates antiviral reactions 

requires more experimental investigation. Currently, Toll-7, one of the nine known Toll 

receptors, is known to initiate autophagy. This can be observed through G protein of Vesicular 

Stomatitis Virus (VSV) that attaches to the Toll-7 receptor. In result, the protein is recognized as 

a PAMP and autophagy is initiated. This hinders viral replication and survival within the 

Drosophila host. Vesicular Stomatitis Virus currently remains the only virus where this 

phenomenon is observed leaving room for future investigation. Additionally, through research, 

the Imd pathway is noted to halt the replication process of some viruses in Drosophila as well. 

For example, the antimicrobial peptide DiptB which is produced downstream in the Imd 

pathway, shows some support against Sindbis Virus (SINV.) The JAK/STAT pathway is also 

stimulated in viral innate immunity. This pathway is not initiated by direct virion contact but, 

does stimulate gene expression for antiviral components. Drosophila that exhibit weak or dulled 

JAK/STAT pathway responses, are more likely to succumb to infections of Drosophila C Virus 

(DCV) and Cricket Paralysis Virus (CrPV.) (Xu and Cherry, 2014). Further research would be 
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needed to detail the steps and factors specifically involved within these pathways that cause their 

antiviral responses.  

8. Parallels between Drosophila and Mammalian Viral Immunity  

The innate viral immunity of Drosophila is quite comparable to that of a mammal. For 

example, the Toll pathway stimulation within fruit flies is conserved. Within mammals the 

homologous pathway is called the Toll-like signaling pathway which is regulated with Toll-like 

receptors, a type of protein recognition receptor. This was concluded through the observation of 

that both pathways are dependent on NF-κB transcription factors. Exact transcription factors 

however, differ. Additionally, the Imd pathway of Drosophila parallels the Tumor necrosis 

pathway of mammals. Similarities can also be seen in specific responses. For example, 

autophagy, a vital process for elimination of pathogens, is evolutionarily preserved (Xu and 

Cherry, 2014) Due to these similarities Drosophila melanogaster can be used as a suitable vector 

to model antiviral responses that are consequently applicable to mammals. Research collectively 

has moved toward using experimental fruit flies to observe viruses that are infectious to humans.  

9. Human Infecting Viruses Modeled through Drosophila  

Human infecting viruses such as Human Immunodeficiency Virus (HIV) and Severe 

Acute Respiratory Syndrome Coronavirus (SARS-Cov-1) have been used within research that 

utilize Drosophila in hope of expanding knowledge of their infection motives. Specifically, 

research manipulating Human Immunodeficiency Virus and Severe Acute Respiratory Syndrome 

Coronavirus has been beneficial to understanding how each virus’ proteins overtake a host’s 

environment. Human Immunodeficiency Virus is a broad term that umbrellas infections of HIV-

1 and HIV-2, two types of the virus. HIV-1 has a higher infection rate and accounts for 95% of 
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Human Immunodeficiency Virus infections worldwide. Due to this, HIV-1 has been prioritized 

in scientific research. HIV-1 is a retrovirus that injects its genomic RNA into a host cell. Its RNA 

is then transcribed into complementary DNA using the enzyme reverse transcriptase. (Hiv strains 

and types) (Coffin, et al., 1997) As the infected host cell replicates, the viral genome is 

expressed. Through research that has used Drosophila, three proteins encoded by HIV-1 have 

been modeled. Within cultures of Schneider 2 (S2) cells of Drosophila, HIV-Nef protein and 

human CD4 protein were both observed. (Hughes, et al., 2012) Schneider 2 cells are embryonic 

cells of Drosophila that are excessively used for research due to their ability to take in foreign 

RNA. They can also be easily maintained within a laboratory setting. (Lee and Peng and Guo, 

2013).  Human CD4 protein commonly collaborates with helper T cells during human immune 

responses. (Sekaly and Rooke, 1998) Additionally, HIV-Nef was observed to suppress human 

CD4 through the process of endocytosis. (Hughes, et al., 2012) Future investigation utilizing 

RNA silencing, showed that endocytosis was initiated by HIV- 1 Nef and AP2 protein complex 

interaction. This Nef-AP2 interaction was also validated to be a conserved procedure within 

humans through experiments that utilized HeLa cells. (Hughes, et al., 2012) HeLa cells are one 

of the most commonly used type of human cell within research. In a laboratory setting, these 

cells continuously replicate and divide making them “immortal.” (Butanis, 2017) HIV-1 Rev 

protein has also been evaluated through Schneider 2 cell culture. Rev was observed initiating the 

movement of viral mRNA from the nucleus of a host cell to the cytoplasm. This facilitation has 

been previously identified within mammalian cells concluding that Rev utilizes conserved 

factors to cause this movement. In contrast, transgenic Drosophila have been used 

experimentally with HIV-1 Tat protein. Transgenic Drosophila contain foreign genetic material 

that is introduced for experimental purposes. HIV-1 Tat is necessary for viral survival, 
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expression, and replication. Transgenic Drosophila that expressed Tat, consequently experienced 

inefficient microtubule formation. Microtubules are a structural component within cells that are 

comprised of tubulin. (Sept, 2007) HIV-1 Tat directly disrupts congregation of tubulin. Human 

cells also mimic this process. (Hughes, et al., 2012)   

Drosophila have also been useful within studies of Severe Acute Respiratory Syndrome 

Coronavirus (SARS-CoV-1.) In 2003, an outbreak of SARS-CoV-1 became a global concern. 

The virus is infectious to lung and intestinal tissue of humans and is transmitted through 

respiration particles. SARS-CoV-1 is a pathogenic, enveloped single strand of RNA. The 

experimentation of transgenic fruit flies has helped to understanding the functionality of the 

SARS-CoV-1 3a protein. 3a protein was observed to cause death of ocular tissue within 

experimental flies. This was determined to be carried out through a mitochondrial pathway. 

Within mammalian cells, the mitochondria initiate apoptosis, a process of calculated cell death. 

Through a release of proteins and caspase proteases, cell destruction is activated. Phagocytosis is 

then stimulated to clean up and engulf the dead cells. (Wang and Youle, 2009) This mechanism 

was also seen to take place within mammalian lung and intestinal tissue. Additionally, the 

suppression of the 3a protein by medications was tested. Medications were used to block the ion 

pathway of 3a protein within transgenic flies and human cells. Apoptosis was not observed in 

either samples, solidifying that the SARS-CoV-1 3a protein and induced apoptosis have a direct 

correlation. (Hughes, et al., 2012) Utilization of Drosophila within viral research of Human 

Immunodeficiency Virus (HIV) and Severe Acute Respiratory Syndrome Coronavirus (SARS-

CoV-1) has aided in creating an improved understanding of these viruses as well justifying the 

use of Drosophila as a model organism. When considering the global pandemic caused by 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- 2,) experiments pertaining to 
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Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-1) could be extremely useful. 

Both are considered to be epidemic Coronaviruses and are estimated to share 79.5% genetic 

homology. Coronaviruses are single stranded RNA viruses. Although, coronaviruses target 

several animal hosts ranging from bats to felines, there are currently seven identified human 

infecting coronaviruses (hCoVs) including both SARS-CoV-1 and SARS-CoV-2. (Zhu, 2020) 

Due to their genetic and host similarities, proposing an experiment that utilizes Drosophila to 

investigate SARS-CoV-2 infection, inspired by previous use for SARS-CoV-1 infection could 

elaborate knowledge on the subject.     

10. Proposal Introduction 

In March, 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- 2) was 

declared to be the cause of a worldwide pandemic by the World Health Organization. As of May, 

2021, this coronavirus remains a threat to global populations despite aggressive controlling 

efforts. As of May, 4th, 2021 the Centers for Disease Control and Prevention (CDC) has reported 

a total of 32,228,003 positive cases and 574,220 fatalities due to SARS-CoV- 2 within the United 

States since January 21st, 2020. (CDC COVID Data Tracker) Due to the novelty of this virus, 

complete understanding of its methods of transmission and infection are still pending. Currently, 

most knowledge is based on assumptions made from observation of human infections. (Petersen, 

2020) Trends include the infection of respiratory and gastrointestinal tissue. Transmission occurs 

through contact with infected respiratory particles. This is referred to as airborne transmission. 

The virus is highly infectious and can spread easily between humans. (How coronavirus spreads) 

There is currently a desperate cry for concrete data as fatalities are still exponentially raising. 

Designing an experiment which employs transgenic Drosophila to evaluate specific SARS-CoV-

2 protein expression could create and influence a concrete set of data pertaining to the virus. If 
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the nonstructural protein 15 (NSP15) encoding gene of SARS-Cov-2 is isolated and modified to 

create transgenic Drosophila, ocular tissue could then be harvested and examined to model the 

proliferation of SARS-CoV-2 infected cells. 

11. Gene Expression 

To observe an accurate example of proliferation of a cell infected with SARS-CoV-2, the 

targeted gene which encodes for NSP15 must be efficiently expressed throughout the tested flies. 

Gene expression is the process where genes are transcribed and translated to create a functional 

protein. A gene is a portion of DNA which is comprised of nucleic acids. During gene 

expression, a gene’s specific nucleic acid sequence is copied and transcribed to create RNA. 

Then by translocation, the RNA will synthesize a protein. (Gene expression) Proteins are 

functional factors that carry out cellular processes.    

 Figure 2: Overview of Gene Expression 

   

 

 

                

      

 https://www.ncbi.nlm.nih.gov/probe/docs/applexpression/  

12. GAL4/UAS (upstream activating sequence) System. 

https://www.ncbi.nlm.nih.gov/probe/docs/applexpression/
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Strains of Drosophila can be manipulated to express foreign genetic material. One of the 

most common ways this is done within research is by using the GAL4/UAS (upstream activating 

sequence) system. This expression strategy has been used to tailor experimental Drosophila to 

express viral genes in vivo. The system is highly effective due to its ability to overcome obstacles 

from genetic differences and temperature. It requires the creation of two lines of fruit flies, the 

activating (GAL4) and effector (UAS) line. (Scheer and Campos-Ortega, 1999) GAL4 is a 

transcriptional factor that binds to UAS when crossed. As a result, transcription of a select gene 

is stimulated. (Busson and Pret, 2007) GAL4 lines can be purchased through Bloomington 

Drosophila Stock Center in Bloomington, Indiana. This facility has thousands of GAL4 lines 

available and is easily accessible due their location. These lines are already modified to contain 

regulatory and promoter sequences for GAL4 which are necessary for gene expression. (Gal4 

lines) Additionally, the UAS line of Drosophila must be created. The genome of this line must 

include the upstream activating sequence and the nonstructural protein 15 (NSP15) encoding 

gene of SARS-CoV-2. This gene would have to be harvested from the SARS-CoV-2 genome in 

the form of mRNA and modified before being implemented. (Scheer and Campos-Ortega, 1999) 

After modification, the gene will be introduced into the genome of the flies that will make up the 

UAS line. Once introduced into a new genome, the gene will be a transgene. Transgenes are 

altered genes that are purposely placed within a foreign genome. (Nishu, et al.,2020) The 

transgene should be placed directly next to the upstream activating sequence within the genome. 

This placement allows for fusion and activation of the transgene when crossed with the GAL4 

line. When the GAL4 and UAS lines mate, transgenic progeny that has a mutant phenotype and a 

complete GAL4/UAS system will be produced. Ideally, the progeny will express the SARS-

CoV-2 transgene in every tissue that GAL4 is expressed. Within this system, viral transgene and 
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GAL4 expression are directly correlated. This also means that the SARS-CoV-2 transgene will 

not be expressed where GAL4 is not.     

Figure 3: Overview of GAL4/UAS system 

 

 

This expression system can also be manipulated to force GAL4 and SARS-CoV-2 

transgene expression in solely nonessential tissue. This method would be favorable to decrease 

the probability of host fatality. For example, if the transgene were to encode for NSP15 and 

NSP15 were to stimulate apoptosis, apoptosis would be reserved to nonessential tissue. 

Apoptosis would not be expected to be observed throughout other tissue. Within Drosophila, 

ocular tissue, specifically, eye-antennal disks are nonessential. (Hughes, et al., 2012)  

13. Modifications of the GAL4/UAS System for Transgene Expression 

  The GAL4/UAS expression system favors higher temperatures. Higher temperatures have 

been seen to increase efficient transgene expression. Through evolution viruses have shifted to 

survive within human body temperature. Viruses that could replicate and withstand the 

temperature within humans had a survival advantage over ones that could not. The physiological 

temperature of a human is higher than the favored temperature of a fruit fly. The normal body 

temperature of a human is 37°C. (Protsiv, 2020) The body temperature of Drosophila is directly 

influenced by their environment. Their body will take on the temperature around them and favors  

~25°C. (Goda and Hamada, 2019) Therefore, creating an environmental temperature of over 

25°C for both the GAL4 and SARS-CoV-2 UAS lines of Drosophila, will encourage transgene 

expression within progeny. This temperature, however, should not be increased by more than 
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5°C, as Drosophila cannot internally regulate their body temperature. (Hughes, et al., 2012) 

Environmental temperatures of over 30°C decrease the probability of survival. (Goda and 

Hamada, 2019)   

14. SARS-CoV-2 Nonstructural Protein 15 

Through elementary research of SARS- CoV-2, its known that 28 SARS-CoV-2 proteins 

interact with 417 human proteins during infection. There are 326 proteins within Drosophila that 

show homology with these human proteins. Therefore, choosing to isolate a gene that encodes 

for at least one of these 28 proteins would be ideal to ensuring its expression within Drosophila. 

When observing the genome of SARS-CoV-2 the nonstructural protein 15 (NSP15) interacts 

with four human proteins, NUTF2, RNF41, ARF6, and PPIA. All of these proteins have a 

corresponding protein within Drosophila of either Ntf-2r, elgi, Arf51F, or Cyp. The remaining 

27 viral proteins interact with groups of human proteins that do not all have a homologous link to 

Drosophila. By choosing the gene that encodes for NSP15, this link is ensured and lessens error. 

Once this gene is modified and implanted within the genome of the UAS line of Drosophila, the 

corresponding protein (NSP15) should be expressed. (Hussain, et al., 2020) 

15. Modification of SARS-CoV-2 Nonstructural Protein 15 

An isolated gene should ideally be modified to increase the probability of producing a 

phenotype when expressed within a transgenic host. Injecting one altered gene into a host’s 

genome may not be efficient to produce a phenotype. Therefore, more than one should be 

adjusted and implanted to ensure the desired level of expression. (Hughes, et al., 2012) This 

would require the isolation of several NSP15 encoding genes and the introduction of them into 
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the same UAS genome. By using this technique in combination with considerations to the 

GAL4/UAS system’s temperature preference, the ideal presentation can be ensured.  

16. Culturing of Eye-antennal Discs  

As transgenic progeny is produced, eye-antennal discs of third instar larval (L3) 

Drosophila should be isolated for culture. L3 is a pre-pupal developmental stage of Drosophila. 

During L3 ocular tissue has reached maturity and can replicate. Within developmental stages 

prior to L3 such as L1 and L2, eye-antennal discs are still morphing into the correct shape and 

size. (Spratford and Kumar, 2014) Therefore, L3 ocular tissue is the most suitable to harvest for 

culture. Harvard University’s method for extraction of eye-antennal discs would be appropriate 

to use. 30 grams of transgenic flies should be gathered and frozen at -80°C for 60 minutes. After 

60 minutes, the frozen contents should be centrifuged until room temperature is reached (20°C.) 

The flies should be blended on high speed in a blender with Shields and Sang M3 medium. (Cell 

culture (fly) Shields and Sang M3 medium is commonly used within insect cell cultures and is 

available for purchase through https://www.sigmaaldrich.com. (Shields and Sang M3 Insect 

MEDIUM S8398) Once a reddish colored liquid is reached, blending can be stopped. The entire 

liquid contents should be transferred to 250mL centrifuge tubes and spun at 2600 rpm for 20 

minutes. Following centrifugation remaining fly carcasses and oil should be removed. The 

supernatant (remaining liquid) will be transferred to new 250mL centrifuge tubes and then spun 

at 3000 rpm for 30 minutes. Additional oil achieved through this step should be removed as well. 

The remaining liquid should be transferred to a new set of 250mL centrifuge tubes and placed 

into a 60°C water bath. After a precipitate forms, the tubes can be removed. This usually take 

about 40 minutes. The tubes should be centrifuged at 3200 rpm for 45 minutes and then 

transferred to a tissue culture hood. Using a 0.22µm filtering unit the supernatant should be 

https://www.sigmaaldrich.com/
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filtered. Several filtering units might be needed, as this supernatant can clog units. The final 

extraction liquid should be approximately 200mL and represent a large sample of eye-antennal 

discs. This sample should be frozen in liquid nitrogen and stored at -20°C (Cell culture (fly)) 

This sample can be used to create cultures of Drosophila eye-antennal discs using a POC-R 

Chamber system. POC- R chamber systems can be easily sterilized and allows for flexibility of 

cultures. This system can be used for both open or closed culture and perfusion. In addition, the 

system can be used for either short or long term culturing projects. (Cell culture + microscopy 

poc-r - ueb.cas.cz.) A small amount of the sample of ocular tissue should be placed directly onto 

a coverslip that is mounted onto a POC-R Chamber system. (Tsao, C.,) Agarose gelling agent 

should be added to fixate the sample onto the coverslip. This should be followed by 1 mL of 

Schneider’s Drosophila culture medium added into the plate of the chamber system. Schneider’s 

Drosophila culture medium is available for purchase through https://www.thermofisher.com and 

was originally developed as a way of growing and observing S2 cells of Drosophila. This 

medium has also proved to successfully grow eye-antennal discs within culture, therefore, is an 

appropriate medium to use. (Schneider's Drosophila Medium) The completed system should 

then be incubated.  

17. BrdU Staining Technique    

BrdU (Bromodeoxyuridine / 5-bromo-2'-deoxyuridine) solution staining techniques can 

be used to evaluate eye-antennal discs in vitro for cell proliferation. In vitro refers to the 

observation of cells outside of their host. For example, cells within a culturing medium would be 

in vitro. Cellular proliferation is the physical increase in cell number resulting from cell 

replication and division. Observations of cellular proliferation look to evaluate the homeostasis 

between cellular gains (increasing cell number) and losses (cell death.) (The cell proliferation 

https://www.thermofisher.com./
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guide) Use of a BrdU assay followed by immunofluorescence staining, allows cell proliferation 

to be visually observed under a Florescent microscope. BrdU  stain, when introduced to a cell 

sample will naturally incorporate itself into the sample cell’s replication process. Specifically, 

BrdU stain targets DNA polymerase. DNA polymerase is an enzyme that facilitates DNA 

replication during cellular replication. (Maga, 2019) BrdU solution can be used to stain the 

transgenic Drosophila eye-antennal disc culture so it can be observed for proliferation. Staining 

kits can be purchased from different providers however, most follow a standard protocol. A 

10mM stock solution of BrdU should be made containing 3mg per 1mL of water. Various bottle 

quantities ranging from 250mg to 5g of BrdU can be purchased through 

https://www.abcam.com. (Brdu (5-bromo-2'-deoxyuridine), thymidine analog (ab142567)) The 

10mM stock should be diluted to a 10 µM solution using Schneider's Drosophila Medium. The 

diluted solution should be then filtered using a 0.2 µM filter. The filtered solution is now 

considered to be a BrdU labeling solution. The Schneider's Drosophila Medium from the POC-R 

chamber system should be removed and replaced with 1mL of BrdU labeling solution. The entire 

system should then be put into a CO2 incubator for up to 24 hours. The actual incubation time 

will depend on the rate of cell proliferation. Rapidly dividing cells require a shorter incubation 

time than slower cells. Finding the optimal incubation time for this culture would require several 

trials. Once removed from incubation the cells should be washed twice with phosphate buffering 

solution (PBS.) Each wash should be for five seconds. These cells should be rinsed three 

additional times with phosphate buffering solution. These washes should be two minutes each. 

Following, PBS washes, the sample should be soaked in 1M HCl for approximately for 10 

minutes. After, three phosphate buffering solution rinses should be repeated. (Brdu staining and 

https://www.abcam.com/
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brdu assay protocol) This staining procedure ensures that BrdU will interact within the 

replication of the targeted eye-antennal discs.    

18. Immunostaining Technique  

 To visualize BrdU implication, an additional staining procedure of Immunostaining must 

be completed. Immunostaining utilizes BrdU antibodies that target areas of BrdU and sample cell 

interaction. Antibodies will bind to fluorophores resulting in the bright visualization of sample 

cell proliferation. Immunostaining is one of the most accurate techniques to visualize cellular 

changes due to encoded protein activity. This is extremely helpful when evaluating transgene 

expression which will consequently encode for a protein. This technique can be categorized into 

either direct staining, when a single primary antibody binds with fluorophores or indirect 

staining, when a secondary antibody binds to fluorophores. An indirect staining technique that 

utilizes BrdU antibody 6326 (ab6326) as a primary and AlexaFlour555 as a secondary antibody 

would be suitable. Ab6326 has been extensively used as a primary antibody within research that 

includes a BrdU and immunostaining process. (Goding, 1996) AlexaFluor555 is commonly 

paired as a secondary antibody to ab6326. AlexaFlour555 produces exceptional coloring, has pH 

stability and is water soluble. (Alexa fluor® conjugated SECONDARY ANTIBODIES.) To 

prepare for staining of the sample of eye-antennal discs, microscope slides and coverslips should 

be sterilized using either 70% ethanol or heating techniques. Using a smear technique, a sample 

of the BrdU stained eye-antennal discs should be placed onto a microscope slide. The slide can 

be set onto a slide warmer until completely dry. (smear preparation) The slide should be 

incubated at -20 °C in 100% Methanol for five minutes. This step will fix the sample to the slide. 

Once fixed the slide should be rinsed with chilled phosphate buffering solution three times. By 

using a methanol-based method of fixation, the slide does not have to be permeabilized. 
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Permeabilization would require an additional step and materials. Ab6326 requires an antibody 

retrieval process to enhance its performance. This antibody can only recognize single stranded 

DNA, making it is essential to denature its DNA strands before use. This process would include 

mixing ab6326 with 2M HCl in effort separate its DNA strands. Acid denaturing methods are 

more efficient for antibody retrieval rather than using a DNA enzyme. (Anti-BrdU antibody) 

Once ab6326 is modified, it should be diluted with 1% Bovine Serum Albumin solution in 

phosphate buffering solution. This should be done in a ratio that creates a 1/250 solution. The 

fixed slide should then be incubated in 1% Bovine Serum Albumin solution for 30 minutes. Then 

the slide should be incubated in the diluted ab6326 solution overnight at 4 °C. Following 

incubation, the slide should be washed with phosphate buffering solution three times. 

AlexaFluor555, the secondary antibody, should be mixed with 1% Bovine Serum Albumin 

solution and then used to incubate the slide for one hour. This should be done in a dimly lit 

setting. After one hour the remaining solution should be removed, and the slide should be 

washed again with phosphate buffering while remaining in a dimly lit setting. An additional 

counterstaining procedure would be required to ensure the proper fluorophore-antibody binding. 

This can be done using Hoechst stain (1mg/mL concentration) incubation for one minute. 

Hoechst stain is known to be the least toxic choice of possible counterstaining agents and more 

suitable for cell survival. Following, counterstaining, the side should be rinsed three times with 

Phosphate buffering solution. A coverslip can then be mounted over the sample area making the 

slide suitable for observation under a florescent microscope. 

19. Evaluation of Proliferation 

Under a florescent microscope, stained eye-antennal discs that encode for SARS-CoV-2 

NSP15 can be observed for proliferation. The fluorescent coloring achieved through fluorophore 
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binding allows for the observer to actively view cellular replication. This includes viewing and 

quantifying the number of cells participating in each stage of the cell cycle (G1, S, G2, M.) Each 

stage of the cell cycle includes specific procedures within the cellular replication process. (The 

cell proliferation guide) Observation can additionally be used to establish a ratio of cells that are 

actively replicating to cells that are not. Replicating cells can be followed through the cell cycle 

to their production of daughter cells. Nonreplicating cells could be within cell stage G0 or dead. 

Cells that are in the G0 phase are at a resting state. (Pizzorno, 2016) These cells, however, can be 

initiated to rejoin the cell cycle. Dead cells can potentially result from apoptosis. Apoptosis can 

be initiated as a regulatory cellular process which induces death of unviable cells. However, 

some viruses have the ability to encode for proteins, like SARS-CoV 3a that stimulate apoptosis 

without reason. Possible ratios that can be observed could include an excess number of cells 

experiencing death in comparison to cells being replenished. Excessive/uncontrolled cellular 

replication with unbalanced cell death could be noted as well. Additionally, proliferation can be 

evaluated to estimate replication time of given cells. Feasible observations could include hasty or 

prolonged replication. In addition to quantifications, comments could be made pertaining to the 

quality of replication. If quick replication were to take place, noting whether the produced 

daughter cells are fully developed and viable would be important. Overall, conclusions can be 

made to help develop a numerical and characteristic standard for SARS-Cov-2 infected cells.  
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